Intereting Posts

Elegant proof of $\int_{-\infty}^{\infty} \frac{dx}{x^4 + a x^2 + b ^2} =\frac {\pi} {b \sqrt{2b+a}}$?
Joint distribution by independent distributions
Generate a number with a die that has three 0s and three 1s
Proving integral of zeroth-order Bessel function multiplied by cosine with complicated arguments
Show $f''+vf' +\alpha^2 f(1-f)=0$ has solutions satisfying $\lim_{x \to – \infty}f=0$ and $\lim_{x \to \infty}f=1$ given $v\leq -2\alpha < 0$
What are the methods of solving linear congruences?
Strictly monotone probability measure
What exactly is integration?
weak convergence in $L^p$ plus convergence of norm implies strong convergence
prove that the sum of the angles in any triangle is less than 180 in hyperbolic geometry (or poincare model).
How smooth can non-nice associative operations on the reals be?
When linear combinations of independent random variables are still independent?
If $x^4 \equiv -1 \mod p$ then $p \equiv 1 \mod 8$
A group of order $595$ has a normal Sylow 17-subgroup.
Voronoi diagram with different metric functions

The question is #$14$ from Chapter $2$ in Stein and Shakarchi’s text *Complex Analysis*:

Suppose that $f$ is holomorphic in an open set containing the closed unit disc, except for a pole at $z_0$ on the unit circle. Show that if $$\sum_{n=0}^\infty a_nz^n$$ denotes the power series expansion $f$ in the open unit disc, then $$\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=z_0.$$

I’ve shown that we can take $z_0=1$ without a loss of generality, but I’m having trouble showing the proof otherwise. One of the problems I’m having is because we aren’t told the definition of a pole except that it is a place where the function isn’t holomorphic. Disregarding this fact, the other problem I’m running into is that I don’t know the order of the pole.

- Is this function nowhere analytic?
- $ f:\mathbb C\rightarrow \mathbb C$ defined by $f(z)=0$, if $Re(z)=0$ or $Im(z)=0$ and $f(z)=z$, otherwise.
- Gamma function has no zeros
- Looking for an example of a rationally indifferent cycle.
- contour integration of a function with two branch points .
- Chain rule for composition of $\mathbb C$ differentiable functions

Making some additional assumptions, including that the pole is simple so we can write $F(z)=(z-1)f(z)$ as a holomorphic function, we see that $$F(z)=-a_0+z(a_0-a_1)+z^2(a_1-a_2)+\cdots$$ This almost gets me to the end with these added assumptions, but I don’t think it’s quite enough (why do we know some of the $a_i$’s aren’t $0$, for example).

On another note, if we know $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}$ exists, then it is easy to see that $\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=1=|z_0|$; I, however, do not see why the limit must exist.

Are there any hints that someone can provide? Even a solution would be nice, especially if one can avoid making any assumptions about what a pole is or is not.

**EDIT**: So there isn’t any confusion, I know the definition of a pole and I’m inclined to believe that the problem, as stated, necessarily has a pole at $z_0$. The problem is that the exercise is in Chapter $2$, and poles are introduced in Chapter $3$.

- Which holomorphic function is this the real part of?
- complex analysis(complex numbers) - Apollonius circle (derivation of proof)
- Radius of convergence: Why do we always use nth root test or ratio test?
- Explicit Riemann mappings
- Definite Integral $\int_0^{\pi/2} \frac{\log(\cos x)}{x^2+\log^2(\cos x)}dx = \frac{\pi}{2}\left(1-\frac{1}{\log 2}\right)$
- Cauchy's residue theorem with an infinite number of poles
- Maximum of Polynomials in the Unit Circle
- Definite integral using the method of residues
- Analytic $F(z)$ has $f(z)$ as derivative $\implies$ $\int_\gamma f(z)\ dz = 0$ for $\gamma$ a closed curve
- Proof of Hartogs's theorem

I will assume we can write

$$f(z) = \frac{c}{z_0-z} + \sum_{n=0}^{\infty} b_n z^n$$

for some value of $c \ne 0$, and $\lim_{n \to \infty} b_n = 0$. Then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

where

$$a_n = b_n + \frac{c}{z_0^{n+1}}$$

Then

$$\begin{align}\lim_{n \to \infty} \frac{a_n}{a_{n+1}} &= \lim_{n \to \infty} \frac{\displaystyle b_n + \frac{c}{z_0^{n+1}}}{\displaystyle b_{n+1}+ \frac{c}{z_0^{n+2}}}\\ &= \lim_{n \to \infty} \frac{\displaystyle \frac{c}{z_0^{n+1}}}{\displaystyle \frac{c}{z_0^{n+2}}}\\ &= z_0\end{align}$$

as was to be shown. Note that the second step above is valid because $z_0$ is on the unit circle.

For a nonsimple pole, we may write

$$f(z) = \frac{c}{(z_0-z)^m} + \sum_{n=0}^{\infty} b_n z^n$$

for $m \in \mathbb{N}$. It might be known that

$$(1-w)^{-m} = \sum_{n=0}^{\infty} \binom{m-1+n}{m-1} w^n$$

Then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{n+1}{n+m} z_0$$

**EDIT**

@TCL observed that we can simply require that $b_n z_0^n$ goes to zero as $n \to \infty$. Then for a simple pole

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{\displaystyle b_n z_0^n + \frac{c}{z_0}}{\displaystyle b_{n+1} z_0^n + \frac{c}{z_0^2}}$$

which you can see goes to $z_0$.

This is just an attempt to give a rigorous proof of Ron Gordon’s answer.

Suppose the order of the pole at $z_0$ is $m$. Then for some constants $c_0,\ldots,c_m, c_m\neq 0,$

$$g(z)=f(z)-\left(\frac{c_m}{(z_0-z)^m}+\cdots +\frac{c_1}{(z_0-z)}\right)$$

is analytic at $z_0$. Since $f(z)$ is analytic on an open set containing the unit disk except at $z_0$, we see that $g(z)$ is analytic on an (possibly different) open set containing the unit disk. So $$g(z)=\sum_{n=0}^\infty b_nz^n$$ has radius of convergence greater than 1, in particular the series converges at $z_0$ and $\lim_n b_nz_0^n=0$. So for $|z|<1$,

$$f(z)=\sum_{n=0}^\infty a_nz^n=\sum_{n=0}^\infty b_nz^n+\left(\frac{c_m}{(z_0-z)^m}+\cdots +\frac{c_1}{(z_0-z)}\right)$$

For $1\le k\le m$, we have $$\frac{c_k}{(z_0-z)^k}=\sum_{n=0}^\infty \frac{(k)_nc_k}{n!z_0^{n+k}} z^n$$

where $(k)_n=k(k+1)\cdots(k+n-1)$ and $(k)_0=1$. It follows that $$a_n=b_n+\sum_{k=1}^m \frac{(k)_nc_k}{n!z_0^{n+k}}$$ and

\begin{align*}\frac{a_n}{a_{n+1}}&=\frac{\sum_{k=1}^m \frac{(k)_nc_k}{n!z_0^{k}} +b_nz_0^n}{\sum_{k=1}^m \frac{(k)_{n+1}c_k}{(n+1)!z_0^{1+k}}+b_{n+1}z_0^n}\\

&= z_0 \frac{\sum_{k=1}^m \frac{(k)_nc_k}{n!z_0^{k}} +b_nz_0^n}{\sum_{k=1}^m \frac{(k)_{n+1}c_k}{(n+1)!z_0^{k}}+b_{n+1}z_0^{n+1}}

\end{align*}

Now divide the numerator and denominator of the last expression by $$\frac{(m)_{n+1}}{(n+1)!}$$, which is equal to 1 when $m=1$ and approaches infinity as $n\to\infty$ if $m>1$. Furthermore, for $1\le k\le m$,

$$\frac{(k)_n}{n!}\cdot \frac{(n+1)!}{(m)_{n+1}}=\frac{(k)_n (n+1)}{(m)_n (n+m)}$$

approaches 0 as $n\to\infty$ if $k<m$ and approaches 1 if $k=m$. It follows that the fraction

$$\frac{\sum_{k=1}^m \frac{(k)_nc_k}{n!z_0^{k}} +b_nz_0^n}{\sum_{k=1}^m \frac{(k)_{n+1}c_k}{(n+1)!z_0^{k}}+b_{n+1}z_0^{n+1}}$$

approaches 1 as $n\to\infty$, and the proof is complete.

EDIT. If $k<m$, $$\frac{(k)_n }{(m)_n }=\prod_{i=0}^{n-1} \frac{k+i}{m+i}=\prod_{i=0}^{n-1} \left(1-\frac{m-k}{m+i}\right)\to 0$$ because $\sum_{i=0}^\infty \frac{m-k}{m+i}=\infty$.

Suppose that

$$

\begin{align}

f(z)(z-z_0)^n

&=(z-z_0)^n\sum_{k=0}^\infty a_kz^k\\

&=\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}z^jz_0^{n-j}\sum_{k=0}^\infty a_kz^k\\

&=\sum_{k=0}^\infty\left(\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}a_{k-j}z_0^{n-j}\right)z^k

\end{align}

$$

converges in a neighborhood of $z_0$. Thus, for some $r\lt1$, we have

$$

\left|\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}a_{k-j}z_0^{n-j}\right|\le c\,r^k

$$

That is, the the $n^{\text{th}}$ finite difference of the sequence $a_kz_0^k$ satisfies

$$

\Delta^na_kz_0^k=O(r^k)

$$

Inverting the finite difference operator yields that there is an $n-1$ degree polynomial $P$ so that

$$

a_kz_0^k=P(k)+O(r^k)

$$

Taking the limit of the ratio of terms yields

$$

\lim_{k\to\infty}\frac{a_kz_0^k}{a_{k+1}z_0^{k+1}}=\lim_{k\to\infty}\frac{P(k)+O(r^k)}{P(k+1)+O(r^{k+1})}=1

$$

That is,

$$

\lim_{k\to\infty}\frac{a_k}{a_{k+1}}=z_0

$$

**Inverting Finite Difference Operators**

If we define the finite difference operator as

$$

\Delta a_k=a_k-a_{k-1}

$$

then, as with indefinite integrals, when inverting $\Delta$, we need to include a constant:

$$

\Delta^{-1}a_k=c+\sum_{j=1}^k a_j

$$

Suppose that $\Delta a_k=P_n(k)+O(r^k)$, where $P_n$ is a degree $n$ polynomial and $0\le r\lt1$. Since the sum of a degree $n$ polynomial is a degree $n+1$ polynomial and the sum of $O(r^k)$ is $c+O(r^k)$, $a_k=P_{n+1}(k)+O(r^k)$.

Iterating, we get that if $\Delta^n a_k=O(r^k)$, then $a_k=P_{n-1}(k)+O(r^k)$.

We can do this by induction on $m$ where $m$ is the order of the pole.

For a simple pole assume we have proved the result.

Then suppose $m>1$, then $(z-z_0)^mf(z)=g(z)$ where $g(z)$ is holomorphic on a disk of radius bigger than $1$.

Consider $h_i(z):= (z-z_0)^{m-i}f(z)$ for $1\leq i \leq m$.

Each $h_i$ is holomorphic on $B(0,1)$ and has a pole of order $i$ at $1$.

$h_i(z)= \sum_{n=0}^{\infty} a_{in} z^n, |z|<1$

Since $h_m(z)=f(z)$ we would be done if we show $\lim_{n\to \infty} \frac{a_{in}}{a_{i(n+1)}}=z_0 \Rightarrow \lim_{n\to \infty} \frac{a_{(i+1)n}}{a_{(i+1)n}}=z_0$

Note: We use the induction hypothesis to get this for $h_1$.

To this end, we make the following observation.

$(z-z_0)h_{i+1}(z)=h_{i}(z)$

Comparing coefficients we deduce

$a_{in}=a_{(i+1)(n-1)}-z_0a_{(i+1)n}$

and hence the following

$a_{(i+1)n}z_0^{n+1}= -(a_{i0}+a_{i1}z_0 + a_{i2} z_0^2 + \ldots + a_{in}z_0^n)$

Now, $\lim_{n\to \infty} \frac{a_{(i+1)n}}{a_{(i+1)n}} = z_0 \lim_{n\to \infty} \frac{a_{(i+1)n}z_0^n}{a_{(i+1)n}z_0^{n+1}}$.

Thus it is enough to show that

$\lim_{n\to \infty} \frac{a_{(i+1)n}z_0^n}{a_{(i+1)n}z_0^{n+1}}= 1$

$\lim_{n\to \infty} \frac{a_{i0}+a_{i1}z_0 + a_{i2} z_0^2 + \ldots + a_{in}z_0^n}{a_{i0}+a_{i1}z_0 + a_{i2} z_0^2 + \ldots + a_{in}z_0^n + a_{i(n+1)}z_0^{n+1}}=1$

$\lim_{n \to \infty} \frac{S_n(z_0)}{S_{n+1}(z_0)}=1$

where $S_n(z)$ is the $n^{th}$ partial sum at $z$ of $h_i$.

But the above limit is same as

$\lim_{n \to \infty} \lim_{z\to z_0} \frac{(z-z_0)^iS_n(z)}{(z-z_0)^iS_{n+1}(z)} $

Then since the inner term converges uniformly in $z$ (independent of $n$) we can interchange the limits, which gives

$ \lim_{z\to z_0} \lim_{n \to \infty} \frac{(z-z_0)^iS_n(z)}{(z-z_0)^iS_{n+1}(z)}=\lim_{z \to z_0} \frac{g(z)}{g(z)}=1$

Please let me know if anything is unclear.

- How to find a measurable but not integrable function or a positive integrable function?
- Matrix determinant lemma with adjugate matrix
- Coset representatives for $\mathcal{O}_K/(\alpha)$.
- Why can quotient groups only be defined for subgroups?
- Bounds on $\sum_{k=0}^{m} \binom{n}{k}x^k$ and $\sum_{k=0}^{m} \binom{n}{k}x^k(1-x)^{n-k}, m<n$
- To prove $f$ to be a monotone function
- Given $X$ and $Y$ are independent N(0,1) random variables and $Z = \sqrt{X^2+Y^2}$ from the marginal pdf of $Z$
- Application of complex analysis and contour integral in generating functions
- The field of algebraic numbers in $\mathbb Q (a_1,\ldots, a_l)$ is finite over $\mathbb Q$
- Stereographic projection is a homeomorphism $S^n \setminus \{p\} \to \mathbb{R}^n$
- Why are the only division algebras over the real numbers the real numbers, the complex numbers, and the quaternions?
- Find the real parameter a so that the equation has real and positive roots
- Cardinality of a locally compact Hausdorff space without isolated points
- Number of monic irreducible polynomials of prime degree $p$ over finite fields
- What is the derivative of: $f(x)=x^{2x^{3x^{4x^{5x^{6x^{7x^{.{^{.^{.}}}}}}}}}}$?