Dirac Delta and Exponential integral

I am able to derive the following equation by substituting the definition of a Fourier transform into it’s inverse.

$$2\pi\delta(x-x’) = \int_{-\infty}^{\infty} e^{ik(x-x’)} dk$$

How do you prove that the Dirac Delta is equal to an integral of the exponential function? How do you prove the above equation is true?

Solutions Collecting From Web of "Dirac Delta and Exponential integral"

Let $$h_a(x)= \int_{-a}^a e^{i k x} dk = \frac{2 \sin(a x)}{x}= a \, H'(ax), \\ H(x) = \int_{-\infty}^x \frac{2 \sin(y)}{y}dy, \qquad H(-\infty) = 0, H(+\infty) = C$$
where for some reason $C = 2\pi$

If $\phi,\phi’$ are $L^1$ then
$$\lim_{a \to \infty}\int_{-\infty}^\infty h_a(x) \phi(x) dx = -\lim_{a \to \infty}\int_{-\infty}^\infty H(ax) \phi'(x) dx\\ = -\int_{-\infty}^\infty H(+\infty x) \phi'(x) dx = -\int_0^\infty C \phi'(x) dx= 2\pi \phi(0)$$
ie. in the sense of distributions $$\int_{-\infty}^\infty e^{ik x}dk \overset{def}=\lim_{a \to\infty} h_a = 2\pi \delta$$

Note how this proves the Fourier inversion theorem.

We can give a meaning to $\int_{-\infty}^{\infty} e^{ikx} \, dk$ by introducing a damping factor $e^{-\frac12\epsilon k^2}$ inside the integral and at the end let $\epsilon \to 0$:
\int_{-\infty}^{\infty} e^{-\frac12\epsilon k^2} e^{ikx} \, dk
= \int_{-\infty}^{\infty} e^{-\frac12\epsilon (k-ix/\epsilon)^2} e^{-\frac12 x^2/\epsilon} \, dk \\
= e^{-\frac12 x^2/\epsilon} \int_{-\infty}^{\infty} e^{-\frac12\epsilon (k-ix/\epsilon)^2} \, dk
= \sqrt{\frac{2\pi}{\epsilon}} \, e^{-\frac12 x^2/\epsilon}
\to 2\pi \, \delta(x)