# Evaluating $\int{ \frac{x^n}{1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}}}dx$ using Pascal inversion

This question already has an answer here:

• Calculate $\int \limits {x^n \over 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+…+\frac{x^n}{n!}} dx$ where $n$ is a positive integer.

#### Solutions Collecting From Web of "Evaluating $\int{ \frac{x^n}{1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}}}dx$ using Pascal inversion"
$$\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)’=1 + x + \frac{x^2}{2} + \cdots + \frac{x^{n-1}}{(n-1)!}$$ giving
$$\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)-\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)’=\frac{x^n}{n!}$$ and
\begin{align} \int \frac{x^n}{1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}}dx&=n!\int\frac{\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)-\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)’}{1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}}\:dx\\\\ &=n!\int dx-n!\int\frac{\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)’}{\left(1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right)}\:dx. \end{align} Thus
$$\int \frac{x^n}{1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}}dx=n!\:x-n!\ln \left| 1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}\right|+C.$$