Explicit form of Poincare's map for the spring-mass-damper

Problem: Write in explicit form Poincare’s map for
$\ddot x+\delta\dot x+\omega_0^2x=\gamma\cos\omega t$.

Find the stationary points and examine their stability.

An attempt at a solution:

The characteristic equation of the homogenous equation is $z^2+\delta z+\omega_0^2=0$

Its roots are $$z_{1,2}=\frac{-\delta\pm\sqrt{\delta^2-4\omega_0^2}}{2}$$

The solution to the homogenous differential equation is thus
$$x(t)=Ae^{z_1t}+Be^{z_2t}$$

Let us now use the method of undetermined coefficients to find a particular solution as follows:

We will be looking for a solution in the form
$$x_p(t)=a\gamma\cos\omega t + b\gamma\sin\omega t$$

Then
$$\dot x_p(t)=-a\omega\gamma\sin\omega t + b\omega\gamma\cos\omega t,$$
$$\ddot x_p(t)=-a\omega^2\gamma\cos\omega t – b\omega^2\gamma\sin\omega t$$

Substituting we get
$$-a\omega^2\gamma\cos\omega t – b\omega^2\gamma\sin\omega t + \delta(-a\omega\gamma\sin\omega t + b\omega\gamma\cos\omega t)+\omega_0^2(a\gamma\cos\omega t + b\gamma\sin\omega t)=\gamma\cos\omega t$$

Equating the coefficients, we obtain the following system:
$$-a\omega^2+b\delta\omega+\omega_0^2a=1$$
$$-b\omega^2-a\delta\omega+\omega_0^2b=0$$

Therefore,
$$a=\frac{\omega_0^2-\omega^2}{(\omega_0^2-\omega^2)^2+(\delta\omega)^2}\land b=\frac{(\delta\omega)^2}{(\omega_0^2-\omega^2)^2+(\delta\omega)^2}$$

Now the general solution is
$$Ae^{z_1t}+Be^{z_2t}+a\gamma\cos\omega t + b\gamma\sin\omega t$$

Let us consider the initial conditions $x(0)=x_0, \dot x(0)=y_0$.

Using the initial conditions, we get
$$A=x_0-a\gamma-B, \quad B=\frac{y_0-x_0z_1+a\gamma z_1-b\gamma\omega}{z_2-z_1}$$

Replace $\theta$ with $\omega t$, now lets write the equation as an autonomous system as such:
$$\dot x=y$$
$$\dot y=-\delta y-\omega^2_0x+\gamma\cos\theta$$
$$\dot\theta=\omega (\text{mod}\quad 2\pi)$$

WLOG we may consider $\theta(0)=0$. Then the flow is $\phi^t(x_0,y_0,0)=(x(t),y(t),\omega t)$.

The section is $\Gamma^0=\{(x,y,\theta):\theta=0\}$.

Finally Poincare’s map is $P(x_0,y_0)=(x(\frac{2\pi}{\omega}),y(\frac{2\pi}{\omega}))$.

I want to examine the stability of all periodic solutions corresponding to fixed points of Poincare’s map. Finding the fixed points seems beyond me now. I need help with that. Furthermore, how could I go about finding fundamental matrixes for the respctive periodical solutions and the respective monodromy matrices? Any help would be appreciated.

Solutions Collecting From Web of "Explicit form of Poincare's map for the spring-mass-damper"