General Leibniz rule for triple products

I have a question regarding the General Leibniz rule which is the rule for the $n^{th}$ derivative of a product and reads:
$$
(f g)^{(n)}=\sum_{k=0}^{n} {n \choose k} \,f^{(k)} g^{(n-k)}.
$$
However, what about if there is a triple product instead of just a product. (i.e. $(f \cdot g \cdot h)^{(n)}$)? Is there a comprahensive formula for such a derivative? I have yet to find one, but perhaps someone knows it.

Solutions Collecting From Web of "General Leibniz rule for triple products"

Yes, it is. Just change binomial coefficient to trinomial coefficient. Namely
$$(f\cdot g\cdot h)^{(n)}=\sum_{k_1+k_2+k_3=n}{n\choose {k_1,k_2,k_3}}f^{(k_1)}g^{(k_2)}h^{(k_3)}$$
The proof is quite straightforward from Leibniz rule.
$$\begin{align}(fgh)^{(n)}&=\sum_{k=0}^n\frac{n!}{k!(n-k)!}f^{(k)}(gh)^{(n-k)}\\&=\sum_{k=0}^n\frac{n!}{k!(n-k)!}f^{(k)}\sum_{l=0}^{n-k}\frac{(n-k)!}{(n-k-l)!l!}g^{(l)}h^{(n-k-l)}\\&=\sum_{k+l\leq n}^n\frac{n!}{k!l!(n-k-l)!}f^{(k)}g^{(l)}h^{(n-k-l)}\end{align}$$
As you can see, this can be generalized to product of any $m$ functions via multinomial coefficient by induction.

In general
$$
\bigg(\prod_{j=1}^m f_j\bigg)^{\!(n)}=\sum_{\substack{k_1,\ldots,k_m\ge 0\\ k_1+\cdots+k_m=n}} \frac{n!}{k_1!\cdots k_m!} f_1^{(k_1)}\cdots f_m^{(k_m)}.
$$

Using the standard Leibniz rule for products twice:
$$
\begin{align}
((f\cdot g)\cdot h)^{(n)}
&=\sum_{k=0}^n\binom{n}{k}(f\cdot g)^{(k)}h^{(n-k)}\\
&=\sum_{k=0}^n\binom{n}{k}\sum_{j=0}^k\binom{k}{j}f^{(j)}g^{(k-j)}h^{(n-k)}\\
&=\sum_{k=0}^n\sum_{j=0}^k\frac{n!}{j!(k-j)!(n-k)!}f^{(j)}g^{(k-j)}h^{(n-k)}\\
&=\sum_{j=0}^n\sum_{k=j}^n\frac{n!}{j!(k-j)!(n-k)!}f^{(j)}g^{(k-j)}h^{(n-k)}\\
&=\sum_{j=0}^n\sum_{k=0}^{n-j}\frac{n!}{j!k!(n-k-j)!}f^{(j)}g^{(k)}h^{(n-k-j)}\\
&=\sum_{\substack{i+j+k=n\\i,j,k\ge0}}\frac{n!}{i!j!k!}f^{(j)}g^{(k)}h^{(i)}
\end{align}
$$