L2 Matrix Norm Upper Bound in terms of Bounds of its Column

I need to find an upper bound for a matrix norm in terms of bounds of its columns. I have a vector $\varepsilon_i(x) \in R^{n\times1} $ such that $||\varepsilon_i(x)||_2\le\gamma_0$. I also have a matrix $Z=[\varepsilon_1, \varepsilon_2, \varepsilon_3, … ,\varepsilon_N] \in R^{n\times N}$.

Using the information $||\varepsilon_i(x)||_2\le\gamma_0$, can I find an upper bound for $||Z||_2$?

If this were to be a frobenius norm question, it would be quite easy to show. However, I couldn’t find an inequality for L2 norm case.

Thank you in advance for your help.

Solutions Collecting From Web of "L2 Matrix Norm Upper Bound in terms of Bounds of its Column"

If you use the following definition for $\|Z\|_2$, where $Z\in\mathbb R^{n\times N}$
$$\|Z\|_2:=\sup\limits_{x\in \mathbb R^N}{\frac{\|Zx\|_2}{\|x\|_2}}$$
then you have $Zx=\sum\limits_{i=1}^{N}{x_i\epsilon_i}\Rightarrow \|Zx\|_2=\|\sum\limits_{i=1}^{N}{x_i\epsilon_i}\|_2\leq \sum\limits_{i=1}^{N}{|x_1|\|\epsilon_i\|_2}\leq \gamma_0\sum\limits_{i=1}^{N}{|x_1|}$
Also $\|x\|_2=\sqrt{x_1^2+…+x_N^2}\ge \frac{1}{\sqrt N}\sum\limits_{i=1}^{N}{|x_1|}$. So you get $$\frac{\|Zx\|_2}{\|x\|_2}\leq \gamma_0\frac{\sum\limits_{i=1}^{N}{|x_1|}}{\frac{1}{\sqrt N}\sum\limits_{i=1}^{N}{|x_1|}}=\gamma_0\sqrt N$$
Finally, $$\|Z\|_2=\sup\limits_{x\in \mathbb R^N}{\frac{\|Zx\|_2}{\|x\|_2}}\leq \gamma_0\sqrt N$$