I have one problem which needs to count the number of solution of the equation $$2x+7y+11z=42$$ where $x,y,z \in \{0,1,2,3,4,5,\dots\}$. My attempt: I noticed that that maximum value of $z$ could be $3$,hence $z \in \{0,1,2,3\}$ after this it was hit and trial for the remaining equations and finally I got $9$ solutions of $(x,y,z)$,however […]

Can anyone suggest pre algebra book for beginner. Would like to see something more than the worksheets offered online. I would prefer a book which would teach strong fundamentals concepts about beginning algebra. I would like to add it is for my kid who started middle school.

Evaluate $$\lim \limits_{n\to \infty }\sin^2 \left(\pi \sqrt{(n!)^2-(n!)}\right)$$ I tried it by Stirling’s Approximation $$n! \approx \sqrt{2\pi n}.n^n e^{-n}$$ but it leads us to nowhere. Any hint will be of great help.

Evaluate: $$\sum_{n=0}^{\infty} \frac {(-1)^n}{4^{4n+1}(4n+1)} $$ I rewrote the sum as $$\sum_{n=0}^{\infty} \frac {1}{4^{8n-7}(8n-7)} – \sum_{n=0}^{\infty} \frac {1}{4^{8n-3}(8n-3)}$$ Now, I tried to express this as a Geometric Series and Partial Fraction but was unable to do so. I also tried to use Riemann Sum, but I don’t know how to apply it here. Any help will […]

Solve $\cos x+8\sin x-7=0$ My attempt: \begin{align} &8\sin x=7-\cos x\\ &\implies 8\cdot \left(2\sin \frac{x}{2}\cos \frac{x}{2}\right)=7-\cos x\\ &\implies 16\sin \frac{x}{2}\cos \frac{x}{2}=7-1+2\sin ^2\frac{x}{2}\\ &\implies 16\sin \frac{x}{2}\cos \frac{x}{2}=6+2\sin^2 \frac{x}{2}\\ &\implies 8\sin \frac{x}{2}\cos \frac{x}{2}=3+\sin^2 \frac{x}{2}\\ &\implies 0=\sin^2 \frac{x}{2}-8\sin \frac{x}{2}\cos \frac{x}{2}+3\\ &\implies 0=\sin \frac{x}{2}\left(\sin \frac{x}{2}-8\cos \frac{x}{2}\right)+3 \end{align} I’m not sure how to proceed from here (if this process is even […]

Let $k\in\mathbb{N}$ be odd and $N\in\mathbb{N}$. You may assume that $N>k^2/4$ although I don’t think that is relevant. Let $\zeta:=\exp(2\pi i/k)$ and $\alpha_v:=\zeta^v+\zeta^{-v}+\zeta^{-1}$. As it comes from the trace of a positive matrix I know that the following is real: $$\sum_{v=1}^{\frac{k-1}{2}}\sec^2\left(\frac{2\pi v}{k}\right)\frac{(\overline{\alpha_v}^N+\alpha_v^N\zeta^{2N})(\zeta^{2v}-1)^2}{\zeta^N\zeta^{2v}}.$$ I am guessing, and numerical evidence suggests, that in fact $$\frac{(\overline{\alpha_v}^N+\alpha_v^N\zeta^{2N})(\zeta^{2v}-1)^2}{\zeta^N\zeta^{2v}}$$ is real […]

How can I prove that, for $a,b \in \mathbb{Z}$ we have $$ 0 \leq \left \lfloor{\frac{2a}{b}}\right \rfloor – 2 \left \lfloor{\frac{a}{b}}\right \rfloor \leq 1 \, ? $$ Here, $\left \lfloor\,\right \rfloor$ is the floor function. I tried the following: say that $\frac{2a}{b} = x$, and $ \left \lfloor{\frac{2a}{b}}\right \rfloor = m$, with $0 \leq x […]

Lately, I’ve been very confused about the weird properties of limits. For example, I was very surprised to find out that $\lim_{n \to \infty} (3^n+4^n)^{\large \frac 1n}=4$ , because if you treat this as an equation, you can raise both sides to the $n$ power, subtract, and reach the wrong conclusion that $\lim_{n \to \infty} […]

first of all I am sorry if the level of this question is nowhere near the usual level of questions on this site because my math knowledge is still very basic. I hope you won’t mind. I found this problem on some site: “A basket of oranges costs 20 dollars, a basket of pears costs […]

From the Generating function for Legendre Polynomials: $$\Phi(x,h)=(1-2xh+h^2)^{-1/2}\quad\text{for}\quad \mid{h}\,\mid\,\lt 1$$ My text states that: For $x=1$ $$\Phi(1,h)=\color{red}{(1-2h+h^2)^{-1/2}=\frac{1}{1-h}}=1+h+h^2+\cdots$$ My question is about the justification of the equality marked $\color{red}{\mathrm{red}}$. Since although $$\Phi(1,h)=(1-2h+h^2)^{-1/2}=\Big((1-h)(1-h)\Big)^{-1/2}$$$$=\Big((1-h)^2\Big)^{-1/2}=\color{#180}{\frac{1}{1-h}}=1+h+h^2+\cdots\tag{1}$$ as required. I could also write $$\Phi(1,h)=(1-2h+h^2)^{-1/2}=\Big((h-1)(h-1)\Big)^{-1/2}$$$$=\Big((h-1)^2\Big)^{-1/2}=\color{blue}{\frac{1}{h-1}}=\frac{1}{h}\left(1-\frac{1}{h}\right)^{-1}\ne 1+h+h^2+\cdots\tag{2}$$ Why is it that $\Phi(1,h)$ is equal to $(1)$ but not equal to $(2)$? I think […]

Intereting Posts

Proof of Bezout's Lemma using Euclid's Algorithm backwards
Find the exact value of the infinite sum $\sum_{n=1}^\infty \big\{\mathrm{e}-\big(1+\frac1n\big)^{n}\big\}$
Are functions of independent variables also independent?
At what times before $1{:}30$ in the afternoon do all three doctors schedule their appointments to begin at the same time?
Maximal real subfield of $\mathbb{Q}(\zeta )$
Geometric proof for inequality
How many Jordan normal forms are there for this characteristic polynomial?
Prove that a group with exactly two proper nontrivial subgroups is isomorphic to $\mathbb{Z}_{pq}$ or $\mathbb{Z}_{p^3}$.
Prove that $\prod_{k=1}^{\infty} \big\{(1+\frac1{k})^{k+\frac1{2}}\big/e\big\} = \dfrac{e}{\sqrt{2\pi}}$
Combination with repetitions.
How prove this $\prod_{1\le i<j\le n}\frac{a_{j}-a_{i}}{j-i}$ is integer
If $x_{m+n} \le x_n+x_m$, then $\lim x_n/n$ exists and is equal to $\inf x_n/n$
Finding derivative of $\sqrt{x}$ using only limits
Analyzing limits problem Calculus (tell me where I'm wrong).
Checking if one “special” kind of block matrix is Hurwitz