Suppose that $G=(V,E)$ is a connected bipartite graph with $|V|=N$ and vertex set bipartition $V = A \cup B$ such that $|A|=|B|$. Assume that $\alpha(G) = N/2$. Is it always true that $A$ and $B$ are the only two maximum independent sets of $V$?

Let $G$ be a group and $S\subseteq G$. Consider a $d$-dimensional chessboard of size $n_1\times n_2\times \ldots \times n_d$, where $n_1,n_2,\ldots,n_d\in\mathbb{N}$. Each unit hypercube of the chessboard contains an element of $G$, which is called the label of the hypercube. A move consists of three parts: (1) selecting an element $s\in S$, (2) choosing a […]

The rows and the columns of an $n\times n$ chessboard are numbered $1$ to $n$, and a coin is placed on each field. The following game is played: A coin showing tails is selected. If it is in row $x$ and column $y$, then every coin with row number at least $x$ and a column […]

What is the maximum size of an antichain of $[n]:=\{1,2,3,\dots,n\}$ (say $\mathcal{A}$) such that $\mid A\cap B\mid \ge k$ where $A,B\in \mathcal{A}$ and $1\le k\le n-1$? By antichain, I mean an antichain of the poset $(2^{[n]},\subseteq)$ where $2^{[n]}$ is the power set of $[n]$. Related: 833011

There are $P$ points in the 2-dimensional plane. Through each point, we draw two orthogonal lines: one horizontal (parallel to x axis), one vertical (parallel to y axis). Obviously, some of these lines conicide. How can we arrange the points such as the total number of lines is minimized? I started with solving the dual […]

Motivated by: Tiling an orthogonal polygon with squares, How to prove that the minimum square partition of a 3X2 rectangle has 3 squares, Minimum square partitions for 4×3 and 5×4 rectangles, What is the minimum square partition of an almost-square rectangle?. Let: An almost-square-rectangle be a rectangle that has a width $w$ and height $h=w-1$. […]

Let $P:\mathbb{Z}_2^n\to\mathbb{Z}_2$ be a polynomial of degree $k$ over the boolean cube. An affine subcube inside $\mathbb{Z}_2^n$ is defined by a basis of $k+1$ linearly independent vectors and an offset in $\mathbb{Z}_2^n$. [See “Testing Low-Degree Polynomials over GF(2)” by Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, Dana Ron – http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.1235 – for more details] […]

I am trying to figure out if a graph can be assumed Hamiltonian or not, or if it’s indeterminable with minimal information: A graph has 17 vertices and 129 edges. Hamiltonian graphs are proved by, as long as the vertices are greater than or equal to 3 (which this is), then if the sum of […]

I am doing research on the sense of smell and have a combinatorics problem: I have 128 different odors (n) and I mix them in mixtures of 10 (r). There are 2.26846154e+14 different mixtures. What I want to know is: What is the size of the group of mixtures such that no mixture in the […]

Apologies for being unsure the best way to express this problem. I have 9 tables with 4 students at each table. I want to re-seat all students so no two students who have sat together ever sit together again. What’s the maximum possible number of re-seatings? Generally, given a set S of students partitioned into […]

Intereting Posts

If $f$ is integrable then $|f|$ is also integrable
proving identity for statistical distance
Why people use the Gram-Schmidt process instead of just chosing the standard basis
$\sum_{i=1}^{n} (3i + 2n)$
Fitting an exponential function to data
Where is the flaw in my Continuum Hypothesis Proof?
If $a$ is even and $b$ is odd then $\gcd(2^{a}+1,2^{b}+1)=1$
I cannot make the mental leap from a vector to a function!
Solving this equation $10\sin^2θ−4\sinθ−5=0$ for $0 ≤ θ<360°$
Uniform convergence of real part of holomorphic functions on compact sets
Average smallest prime factors
Probability all numbers will be selected?
Fibonacci number identity.
How to calculate the distance between this two houses?
Prime Arithmetic Progression with one fixed Element