If we were to randomly drop $n$ needles of random length in a circle, what would be the odds of finding $k$ intersections? This can be asked as: Randomly place $n$ line segments in a circle. Their length and position is determined by $2$ random points uniformly and independently set in that circle. What are […]

Let’s choose three points on the sides of an equilateral triangle(one point on each side) and construct a triangle with these three points. what is the probability that area of this triangle be at least one half of the area of equilateral triangle?

I have earlier seen the question about finding the average length of two points and $n$ points inside the unit disk. But what about the more simple question, what happens if the points lie exactly on the circle? I did some basic algebra, assume that the radius of the circle is $r$. without loss of […]

At Probability that one part of a randomly cut equilateral triangle covers the other, the case with flipping allowed was quickly solved. The case without flipping seems more difficult and hasn’t been adressed, so I’m posting it as a separate question: What is the probability that randomly cutting an equilateral triangle will allow one part […]

If you make a straight cut through a square, one part can always be made to cover the other. (This is true by symmetry if the cut goes through the centre, and if it doesn’t, you can shift it to the centre while taking from one part and giving to the other.) However, if you […]

The vertices are chosen completely randomly and all lie on the circumference. Is there a formula for the chance that an $n$-gon covers over $50$% of the area of the circle, with any input $n$? I tried to find something, however I did not know what to look for when I realized the first three […]

If we pick randomly two points inside a circle centred at $O$ with radius $R$, and draw two circles centred at the two points with radius equal to the distance between them, what is the expected area of the intersection of the two cirlces that contain the origin $O$.

The problem whose solution is based on the solution to the problem in the title came up as I was trying to find a simpler variant of my needle problem. I we were to uniformly, randomly and independently set $2n$ points on a circle, and then randomly connect them in a way such that each […]

Background : I happen to love solving tough problems. Problem is, I simply cannot answer some! It happened again today, as I attempted to solve the questions in this site: http://www.skytopia.com/project/imath/imath.html This site seems to have really, really difficult questions, and in fact, I’m struggling to answer the second question! That struggle is not without […]

This question was asked in a test and I got it right. The answer key gives $\frac12$. Problem: If 3 distinct points are chosen on a plane, find the probability that they form a triangle. Attempt 1: The 3rd point will either be collinear or non-collinear with the other 2 points. Hence the probability is […]

Intereting Posts

Nash Equilibria for zero-sum games (Rock Paper Scissors)
An integral$\frac{1}{2\pi}\int_0^{2\pi}\log|\exp(i\theta)-a|\text{d}\theta=0$ which I can calculate but can't understand it.
Why a tesselation of the plane by a convex polygon of 7 or more sides is not possible?
Is the closure of $ X \cap Y$ equal to $\bar{X} \cap \bar{Y}$?
A function is not continuous, but the image of convergent sequences converge
Rate of convergence of mean in a central limit theorem setting
The cardinality of $\mathbb{R}/\mathbb Q$
$M\oplus A \cong A\oplus A$ implies $M\cong A$?
Why the matrix of $dG_0$ is $I_l$.
Novel approaches to elementary number theory and abstract algebra
Given A Real Vector Space, Any two choices of Basis Gives A Same Topology
Counts of certain types of faces of the $CQHRL_d$ polytope family
Roots in different algebraic closure have the same multiplicative relations
How does one define the complex distribution $1/z$?
In how many ways can a $31$ member management be selected from $40$ men and $40$ women so that there is a majority of women?