This question already has an answer here: If $a,b,c$ are positive integers, with $a^2+b^2-ab=c^2$ prove that $(a-b)(b-c)\le0$. 6 answers

How to find the minimum value of $$\frac{x}{3y^2+3z^2+3yz+1}+\frac{y}{3x^2+3z^2+3xz+1}+\frac{z}{3x^2+3y^2+3xy+1}$$,where $x,y,z\geq 0$ and $x+y+z=1$. It seems to be hard if we use calculus methods. Are there another method? I have no idea. Thank you.

I have tried to do a bunch of different versions of AM-GM on this and the equivalent versions that come from substituting in $abc=1$ and I always flip the inequality by doing it. Help is greatly appreciated.

This question already has an answer here: Prove $a^ab^bc^c\ge (abc)^{\frac{a+b+c}3}$ for positive numbers. 3 answers

Suppose that $n\geq2$, $g\in(0,1)$ and $s\in(0,1)$. Show that: $1-(1-g)ns(1-(1-g)s)^{n-1}-(1-(1-g)s)^n > 0 $ What I have done: I have confirmed that given my assumptions this inequality holds with the help of Mathematica. Here a picture of how the function looks like. In the y-axis the value of the function and in the x-axis the value of […]

Prove that: $$a^2+b^2+c^2 \leq a^2b+b^2c+c^2a+1, (\forall) a,b,c \in [0,1].$$ I have no idea, I try $AM\geq GM$ but still nothing.

How would I write a detailed structured proof for: for all real numbers $x$ and $y$, $|x + y| \le |x| + |y|$ I’m planning on breaking it up into four cases, where both $x,y < 0$, $x \ge 0$ and $y<0$, $x<0$ and $y \ge0$, and $x,y \ge 0$. But I’m not sure how […]

Step one: for case where $n=6$ $$7n <2^n$$ $$7(6)<2^6 \rightarrow 42<64$$. Step two: Suppose for $n$ such that $7n<2^n$ is true. Now prove for $n+1$ $$(2)7n<(2)2^n$$ $$14n<2^{n+1}$$ But since $n<7n<2^n$, then $n+7<7(n+1)<2^n+7<2^{n+1}(?)$. Then $7(n+1)<2^{n+1}$ I’m new in this induction process, so any help/tips for this problem would be really appreciated.

If $x>0$, $y>0$, $z>0$ and $xyz = 1$ then $$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2} \le \sqrt{2}(x+y+z)$$ I tried using $\displaystyle x = \frac{a}{b},y = \frac{b}{c}$ and $\displaystyle z = \frac{c}{a}$ substitution, $\displaystyle \sum_{cyc} \frac{\sqrt{a^2+b^2}}{b} \le \sqrt{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \\ \displaystyle \iff 6+ 2\sum_{cyc}\frac{\sqrt{(a^2+b^2)(b^2+c^2)}}{bc} \le \sum_{cyc}\frac{a^2+b^2}{b^2} + 4\sum_{cyc}\frac{b}{a}$ So it would suffice if we showed $\displaystyle \sum_{cyc}\frac{\sqrt{(a^2+b^2)(b^2+c^2)}}{bc} \le 2\sum_{cyc}\frac{b}{a}$ Squaring again does […]

Could you give me some hints, please, to the following problem. Given $x \in \mathbb{R}$ such that $|x| < 1$. Prove by induction the following inequality for all $n \geq 2$: $$(1-x)^n + (1+x)^n < 2^n$$ $1$ Basis: $$n=2$$ $$(1-x)^2 + (1+x)^2 < 2^2$$ $$(1-2x+x^2) + (1+2x+x^2) < 2^2$$ $$2+2x^2 < 2^2$$ $$2(1+x^2) < 2^2$$ […]

Intereting Posts

Closed form for $\sum_{n=0}^\infty\frac{\operatorname{Li}_{1/2}\left(-2^{-2^{-n}}\right)}{\sqrt{2^n}}$
Prove that a continuous image of a closed subset of a compact space is a closed subset
Locally bounded Family
Is there a quick way to solve $3^8 \equiv x \mod 17$?
Is this:$\sum_{n=1}^{\infty}{(-1)}^{\frac{n(n-1)}{2}}\frac{1}{n}$ a convergent series?
Why do we need that $\alpha$ is for regular to existence of arc length as integral?
Matrix Group induction proof and order of elements question
Floret Tessellation of a Sphere
How to solve this nonlinear difference equation $a_{n+1} = 2a_n + \frac{1}{a_n}$, $a_1 = 1$?
Inclusion-exclusion-like fractional sum is positive?
Show that $e^{-\beta} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} e^{-\beta^2 / 4u} du$.
Extending Herstein's Challenging Exercise to Modules
Find the point on the curve farthest from the line $x-y=0$.
Show that $\sum_{n=0}^{\infty}\frac{2^n(5n^5+5n^4+5n^3+5n^2-9n+9)}{(2n+1)(2n+2)(2n+3){2n\choose n}}=\frac{9\pi^2}{8}$
Why study linear algebra?