Noether's definition of right and left ideals?

could anyone provide me with Emmy Noether’s definition of right and left ideals? The German original and references would be welcome.

I am assuming she was the one who first coined those two kinds of one-sided ideals, though the term ideal was already in use in Dedekind. But maybe my assumption is wrong. Feel free to correct me if necessary.

Thanks in advance

Solutions Collecting From Web of "Noether's definition of right and left ideals?"

I don’t know when or by whom they were first introduced, but Noether deals with them in her paper Hyperkomplexe Größen und Darstellungstheorie, Mathematische Zeitschrift $30$ $(1929)$, $641$-$692$, available here. On p. $646$, the second page of the first chapter, we find the following:

$3$. $\mathfrak{G}$ sei ein Ring, d. h. eine Abelsche Gruppe gegenüber Addition, wo auch eine Multiplikation definiert ist, mit den Eigenschaften

$$\begin{align*}
r(a+b)&=ra+rb\\
(a+b)r&=ar+br\\
ab\cdot c&=a\cdot bc\;.
\end{align*}$$

Jedes Element $r$ definiert zugleich zwei Operatoren: die Operatoren $rx$ und $xr$. Zugelassene Untergruppen sind die „Ideale“ $\mathfrak{a}$, und zwar:

  • linksseitige, die die Operationen $rx$ gestatten: $r\mathfrak{a}\subseteqq\mathfrak{a}$;
  • rechtsseitige, die die Operationen $xr$ gestatten: $\mathfrak{a}r\subseteqq\mathfrak{a}$;
  • zweiseitige, die beide Operationen gestatten.

This terminology can still be seen, as in this article in German Wikipedia, though I have the impression that Linksideal and Rechtsideal are now more common.