Pontryagin dual of the unit circle

Define the unit circle as $\frac{\mathbb{R}}{2\pi\mathbb{Z}}.$ I know the Pontryagin dual (looking at properties of the Fourier transform on locally compact Abelian groups) is $\mathbb{Z}$ but why?

Any notes or suggestions will be appreciated.

Solutions Collecting From Web of "Pontryagin dual of the unit circle"