Product of two complementary error functions (erfc)

I believe that (i.e., it would be convenient if, and visually appears that) the product of the two complementary error functions:

$$\operatorname{erfc}\left[\frac{a-x}{b}\right]\operatorname{erfc}\left[\frac{a+x}{b}\right]$$

will have a solution, or can be approximated with a solution, of a Gaussian form (i.e., $c\operatorname{exp}\left[-\frac{x^2}{2d^2}\right]$, where $c$ and $d$ are functions of $a$ and $b$) when $a>0$ and $c>0$, however I cannot find a proof of this. Any help?

enter image description here

Solutions Collecting From Web of "Product of two complementary error functions (erfc)"

In this paper, the authors provide the following simple approximation of the error function:

$$\operatorname{erf}(z) = 1- \exp\{-c_1z-c_2z^2\},\; z\ge 0 $$

with

$$ c_1 = 1.09500814703333,\;\; c_2 = 0.75651138383854$$

Set $\frac{a-x}{b} \equiv z_1$, and $\frac{a+x}{b} =\equiv z_2$. Given also that $\operatorname{erfc} = 1- \operatorname{erf}$, and under the implied restrictions so that $\frac{a-x}{b}\ge 0,\;\frac{a+x}{b}\ge 0$, (for example, for $b>0,\; a>0,\; x\le |a|$) we have, using the approximation,

$$\operatorname{erfc}(z_1)\operatorname{erfc}(z_2) = [1-\operatorname{erf}(z_1)][1-\operatorname{erf}(z_1)] $$

$$\approx [1-1+ \exp\{-c_1z_1-c_2z_2^2\}][1-1+ \exp\{-c_1z_2-c_2z_2^2\}]$$

$$=\exp\{-c_1(z_1+z_2)-c_2(z_1^2+z_2^2)\} \\= \exp\left\{-c_1\left(\frac{a-x}{b}+\frac{a+x}{b}\right)-c_2\left[\left(\frac{a-x}{b}\right)^2+\left(\frac{a+x}{b}\right)^2\right]\right\}$$

$$ =\exp\left\{-\frac{2a}{b}c_1-c_2\left[\left(\frac{a-x}{b}+\frac{a+x}{b}\right)^2-2\frac{a-x}{b}\frac{a+x}{b}\right]\right\} $$

$$=\exp\left\{-\frac{2a}{b}c_1-c_2\left[4\left(\frac{a}{b}\right)^2-2\frac{a^2-x^2}{b^2}\right]\right\} $$

$$=\exp\left\{-\frac{2a}{b}c_1-c_2\left[2\left(\frac{a}{b}\right)^2+2\frac{x^2}{b^2}\right]\right\} $$

$$ = \exp\left\{-\frac{2a}{b}c_1-2c_2\left(\frac{a}{b}\right)^2\right\}\cdot\exp\left\{-2c_2\frac{x^2}{b^2}\right\}$$

$$=C\cdot\exp\left\{-\frac{x^2}{2d^2}\right\} $$

with
$$ C\equiv \exp\left\{-\frac{2a}{b}c_1-2c_2\left(\frac{a}{b}\right)^2\right\},\;\; d^2 = \frac {b^2}{4c_2}$$

Let $x = a$. Then, the product becomes $\mathrm{erfc}(2a/b)$. If the product were equal to an exponential function, that would mean we could express $\mathrm{erfc}$ in terms of elementary functions, which, as far as I know, is impossible.