Prove that $\frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\ge \frac32$

$a,b,c$ are positive reals with $abc = 1$. Prove that
$$\frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\ge \frac32$$

I try to use AM $\ge$ HM.

$$\frac{\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(a+c)}+\dfrac{1}{c^3(a+b)}}3\ge \frac{3}{a^3(b+c)+b^3(a+c)+c^3(a+b)}$$
Then how I proceed.

Solutions Collecting From Web of "Prove that $\frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\ge \frac32$"