Prove the Countable additivity of Lebesgue Integral.

Let $E\subset\mathbb{R}$ a measurable subset, $f\in L^1(E)$ and $\{E_n\}$ a disjoint countable union of measurables sets such that $\bigcup E_n=E$. Show that $$ \int_Ef=\sum_{n=1}^\infty\int_{E_n} f$$

MY ATTEMPT (using a hint of the teacher):

Let $f_n=f\chi_{A_n}$, where $A_n=\bigcup_{n=1}^{\infty}E_n$. As, $f\in L^1(E)\Rightarrow|f|\in L^1(E)$. We have that $|f_n|\leq|f|$ and
$$
\lim_{n\rightarrow\infty}f_n=f\lim_{n\rightarrow\infty}\chi_{A_n}=f\chi_E=f
$$
By the Dominated Convergence Theorem (learn more here: http://en.wikipedia.org/wiki/Dominated_convergence_theorem),
$$
\lim_{n\rightarrow\infty}\int_Ef_n=\int_Ef
$$
Now is my doubt
$$
\lim_{n\rightarrow\infty}\int_Ef_n{=}^*\sum_{n=1}^\infty\int_{E_n}f_n
$$
I don’t know if I can affirm this last equality. Can someone explain this to me?

Solutions Collecting From Web of "Prove the Countable additivity of Lebesgue Integral."