Proving integral of zeroth-order Bessel function multiplied by cosine with complicated arguments

How could it be proved that
$$ \int_0^\infty J_0\left(\alpha\sqrt{x^2+z^2}\right)\ \cos{\beta x}\ \mathrm{d}x = \frac{\cos\left(z\sqrt{\alpha^2-\beta^2}\right)}{\sqrt{\alpha^2-\beta^2}} $$
for $0 < \beta < \alpha$ and $z > 0$ ?
$J_0(x)$ is the zeroth order of Bessel function of the first kind.

I found this integral in Gradshteyn and Ryzhik’s book 7th edition, section 6.677, the equation number 3. Any helps and hints will be appreciated!

Solutions Collecting From Web of "Proving integral of zeroth-order Bessel function multiplied by cosine with complicated arguments"

Note that for $r>0$ one has integral representation
$$J_0(r)=\frac{1}{2\pi}\int_0^{2\pi}e^{ir\cos\phi}d\phi$$
Hence
$$I=\int_0^{\infty}J_0\left(\alpha\sqrt{x^2+z^2}\right)\cos \beta x\,dx=
\frac{1}{4\pi}\int_0^{2\pi}\int_{-\infty}^{\infty}e^{i\alpha\sqrt{x^2+z^2}\cos\phi}\cos\beta x \, d\phi.\tag{1}$$
On the other hand,
$$\sqrt{x^2+z^2}\cos\phi=z\cos(\phi-\phi_0)+x\sin(\phi-\phi_0),$$
where $\tan\phi_0=-\frac{x}{z}$. Exchanging the order of integration in (1) and shifting $\phi$ by $\phi_0$, we arrive at
$$I=\frac{1}{4\pi}\int_0^{2\pi}\int_{-\infty}^{\infty}e^{i\alpha(z\cos\phi+x\sin\phi)}\cos\beta x \, d\phi.$$
Finally, using that $\displaystyle\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega x}dx=\delta(\omega)$ we obtain
$$I=\frac{1}{4}\int_0^{2\pi}e^{i\alpha z\cos\phi}\Bigl[\delta\left(\alpha\sin\phi+\beta\right)+\delta\left(\alpha\sin\phi-\beta\right)\Bigr]d\phi$$
It remains to use $\delta(f(x))=\sum\limits_{\text{zeros of }f}\frac{1}{|f'(x_k)|}\delta(x-x_k)$ and compute the two contributions coming from each of the two delta-functions.