Question about Poisson formula

We have the Laplace equation in polar coordinates:
$$u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta \theta}=0, 0 \leq r <a, 0 \leq \theta \leq 2 \pi$$

With the separation of variables, the solution is in the form $u(r \theta)=R(r) \Theta(\theta)$

Then after calculations, we get:
$$u(r, \theta)=\sum_{n=0}^{\infty}{[A_n \cos{(n \theta)}+B_n \sin{(n \theta)}]r^n}, 0 \leq \theta \leq 2 \pi, 0 \leq r <a$$

The boundary condition is $h(\theta)=u(r=a, \theta)$

$h(\theta)$ is a periodic function with period $ 2 \pi$, so we can write it as a Fourier series.

After calculations we get the following formula (Poisson formula):

$$u(r, \theta)=\frac{a^2-r^2}{2 \pi} \int_0^{2 \pi}{ \frac{h( \phi) d \phi}{a^2+r^2-2 a r \cos{(\theta-\phi)}}}$$
$|r’|=a, |\overrightarrow{r}-\overrightarrow{r’}|^2=|\overrightarrow{r}|^2+|\overrightarrow{r’}|^2-2|\overrightarrow{r}||\overrightarrow{r’}| \cos{(\theta-\phi)}=r^2+a^2-2ar \cos{(\theta – \phi)}$

So we can write the equation also:
$$u(r, \theta)=\frac{a^2-r^2}{2 \pi a} \int_{|\overrightarrow{r’}|=a}{\frac{u(\overrightarrow{r’})ds}{|\overrightarrow{r}-\overrightarrow{r’}|^2}}(*)$$
Could you tell me how we get to the relation $(*)$??
$\frac{ds}{a}= d \phi$

For $r=0$

$$u(0)=\frac{1}{2 \pi a} \int_{| \overrightarrow{r’}|=a}{u(\overrightarrow{r’})}ds$$
This is the mean value of the field at the circumference of the circle.

Could you explain me the sentence above?

Solutions Collecting From Web of "Question about Poisson formula"

For instance the following curve traces a circle of radius $a$:
$$\vec r(s) = a\cos \frac s {a} \hat \imath + a\sin \frac s {a} \hat \jmath$$
where in this case $s$ is the distance along the curve.

Integration of a function $f(\vec r) = f(r,\theta)$ over a circle with radius $a$ can then be written in the following ways:
$$\int_{|\vec r|=a} f(\vec r) |d\vec r| = \int_{|\vec r|=a} f(\vec r) ds = \int_{r=a} f(r,\theta) ds = \int_0^{2\pi} f(a,\theta)\ a d\theta$$

Substitute the relevant formulas to find (*).

The mean value of a function $f(\vec r)$ on a curve is:
$$\text{Mean value} = \frac 1 {\text{Length of curve}} \int_{\text{curve}} f(\vec r) ds $$