Rules for Product and Summation Notation

When we deal with summation notation, there are some useful computational shortcuts, e.g.:
$$\sum\limits_{i=1}^{n} (2 + 3i) = \sum\limits_{i=1}^{n} 2 + \sum\limits_{i=1}^{n} 3i = 2n + \sum\limits_{i=1}^{n}3i$$

However, I don’t think I know all the useful shortcuts here. Are there other computational tricks one should be aware of? What’s a good way for thinking about this?

More importantly, consider product notation:
$$\prod\limits_{i=1}^{n} (\sqrt{2} – \sqrt[n]{2})$$

I don’t know what the shortcuts here are. What are some of the more effective ways of attacking such computations?

Solutions Collecting From Web of "Rules for Product and Summation Notation"

Some sum identities:

$$\sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n)$$

$$\sum_{n=s}^t f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) + g(n)\right]$$

$$\sum_{n=s}^t f(n) – \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) – g(n)\right]$$

$$\sum_{n=s}^t f(n) = \sum_{n=s+p}^{t+p} f(n-p)$$

$$\sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n) = \sum_{n=s}^t f(n)$$

$$\sum_{n\in A} f(n) = \sum_{n\in \sigma(A)} f(n)$$

$$\sum_{i=k_0}^{k_1}\sum_{j=l_0}^{l_1} a_{i,j} = \sum_{j=l_0}^{l_1}\sum_{i=k_0}^{k_1} a_{i,j}$$

$$\sum_{n=0}^t f(2n) + \sum_{n=0}^t f(2n+1) = \sum_{n=0}^{2t+1} f(n)$$

$$\sum_{n=0}^t \sum_{i=0}^{z-1} f(z\cdot n+i) = \sum_{n=0}^{z\cdot t+z-1} f(n)$$

$$\sum_{n=s}^t \ln f(n) = \ln \prod_{n=s}^t f(n)$$

$$c^{\left[\sum_{n=s}^t f(n) \right]} = \prod_{n=s}^t c^{f(n)}$$

$$\sum_{i=m}^n 1 = n+1-m$$

$$\sum_{i=1}^n \frac{1}{i} = H_n$$

$$\sum_{i=1}^n \frac{1}{i^k} = H^k_n$$

$$\sum_{i=m}^n i = \frac{n(n+1)}{2} – \frac{m(m-1)}{2} = \frac{(n+1-m)(n+m)}{2}$$

$$\sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2}$$

$$\sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

$$\sum_{i=0}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^n i\right]^2$$

$$\sum_{i=0}^n i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} = \frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} – \frac{n}{30}$$

$$\sum_{i=0}^n i^p = \frac{(n+1)^{p+1}}{p+1} + \sum_{k=1}^p\frac{B_k}{p-k+1}{p\choose k}(n+1)^{p-k+1}$$

$$\left(\sum_{i=m}^n i\right)^2 = \sum_{i=m}^n ( i^3 – im(m-1) )$$

$$\sum_{i=m}^n i^3 = \left(\sum_{i=m}^n i\right)^2 + m(m-1)\sum_{i=m}^n i$$

$$\sum_{i=m}^{n-1} a^i = \frac{a^m-a^n}{1-a}$$

$$\sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}$$

$$\sum_{i=0}^{n-1} i a^i = \frac{a-na^n+(n-1)a^{n+1}}{(1-a)^2}$$

$$\sum_{i=0}^{n-1} i 2^i = 2+(n-2)2^{n}$$

$$\sum_{i=0}^{n-1} \frac{i}{2^i} = 2-\frac{n+1}{2^{n-1}}$$

$$\sum_{i=0}^n {n \choose i} = 2^n$$

$$\sum_{i=1}^{n} i{n \choose i} = n2^{n-1}$$

$$\sum_{i=0}^{n} i!\cdot{n \choose i} = \sum_{i=0}^{n} {}_{n}P_{i} = \lfloor n!\cdot e \rfloor$$

$$\sum_{i=0}^{n-1} {i \choose k} = {n \choose k+1}$$

$$\sum_{i=0}^n {n \choose i}a^{(n-i)} b^i=(a + b)^n$$

$$\sum_{i=0}^n i\cdot i! = (n+1)! – 1$$

$$\sum_{i=1}^n {}_{i+k}P_{k+1} = \sum_{i=1}^n \prod_{j=0}^k (i+j) = \frac{(n+k+1)!}{(n-1)!(k+2)}$$

$$\sum_{i=0}^n {m+i-1 \choose i} = {m+n \choose n}$$

Summation of product of two functions.

$$ \sum_{i=1}^{n} f(x) g(x) $$ = $$ \sum_{i=1}^{n}f(x)∑g(x) –
[ f(x)∑g(x-1) + f(x-1)∑g(x-2) + f(x-2)∑g(x-3) + …. + f(2)∑g(1) + g(x)∑f(x-1) + g(x-1)∑f(x-2) + g(x-2)∑f(x-3) + …. + g(2)∑f(1)]$$

This is not the simplest form yet. Someone please help me to simplify and retype.

Here are the formula for the sum of the first $n$ natural numbers and the first $n$ squares. There are similar formula for the sum of the first $n$ cubes etc…

$$ \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$ \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} $$

The formula for the sum of an arithmetic series is also useful:

if we know the first term $a_1$ and the last term $a_n$, and the series has $n$ terms, then the sum will be $$\frac{n(a_1+a_n)}{2}$$

I suppose $\prod\limits_{i=1}^{n}(x)$ means multiplying x n times, which is x power n. So maybe it will help, $(\sqrt{2} – \sqrt[n]{2})$ does not contain any i