Suppose that G is a finite, nonabelian group with odd order. Show s is surjective, and hence bijective

Suppose that G is a finite, nonabelian group with odd order. Show s is surjective, and hence bijective.

I have been told to look at the effects of the squaring map, $s\colon G\to G$, defined by $s(g)=g^2$ on the elements of cyclic groups $\langle g\rangle$ of $G$.

I’m stumped. Could anyone give me a nudge in the right direction or (being hopeful) a full solution?

Thanks a lot.

Solutions Collecting From Web of "Suppose that G is a finite, nonabelian group with odd order. Show s is surjective, and hence bijective"