Test for convergence with either comparison test or limit comparison test

Tried using $b_n = \frac1{n^n + 1}$ with limit test which indicated that both either converge or diverge but getting stuck on how to show that one actually does converge.

enter image description here

Solutions Collecting From Web of "Test for convergence with either comparison test or limit comparison test"

Use that $\sum\limits_{k=1}^{\infty} a_k $ converges if and only if $\sum\limits_{k=j}^{\infty} a_k $ converges for a $j \in \mathbb N$

Edit: Here is the full solution:

$\sum\limits_{n=1}^{\infty} \frac{1}{n^n}<\infty \iff \sum\limits_{n=2}^{\infty}
\frac{1}{n^n}<\infty$

and $ \sum\limits_{n=2}^{\infty} \frac{1}{n^n}=\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+…. \leq \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+….=\sum\limits_{n=2}^{\infty} \frac{1}{n^2}< \infty$

You can conclude if the series converges or not,using the ratio test.

It is like that:

$a_n=\frac{1}{n^n}$

$$\frac{a_{n+1}}{a_n}=\frac{\frac{1}{(n+1)^{n+1}}}{\frac{1}{n^n}}=\frac{n^n}{(n+1)^{n+1}} \to 0<1$$

So,the series $\sum_{n=1}^{\infty} \frac{1}{n^n}$ converges.