Intereting Posts

Fields of arbitrary cardinality
Injection of union into disjoint union
Negative binomial distribution – sum of two random variables
Why does the power rule work?
For $x+y=1$, show that $x^4+y^4\ge \frac{1}{8}$
Show that $\lim_{n\to\infty}b_n=\frac{\sqrt{b^2-a^2}}{\arccos\frac{a}{b}}$
Limit of sequence of continued fractions
Field extensions and algebraic/transcendental elements
Combinatorial argument to prove the recurrence relation for number of derangements
Conflicting definitions of “continuity” of ordinal-valued functions on the ordinals
Existence of large chains provable in ZFC?
Partition of a set
inductive proof for $\binom{2n}{n}$
How does adding big O notations works
Vector Space Structures over ($\mathbb{R}$,+)

Let $\eta(\tau)$ be the *Dedekind eta function*. In his *Lost Notebook*, Ramanujan played around with a related function and came up with some of the nice evaluations,

$$\begin{aligned}

\eta(i) &= \frac{1}{2} \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(2i) &= \frac{1}{2^{11/8}} \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(3i) &= \frac{1}{2\cdot 3^{3/8}} \frac{1}{(2+\sqrt{3})^{1/12}} \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(4i) &= \frac{1}{2^{29/16}} \frac{1}{(1+\sqrt{2})^{1/4}} \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(5i) &= \frac{1}{2\sqrt{5}}\left(\tfrac{1+\sqrt{5}}{2}\right)^{-1/2}\, \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(6i) &=\; \color{red}{??}\\

\eta(7i) &= \frac{1}{2\sqrt{7}}\left(-\tfrac{7}{2}+\sqrt{7}+\tfrac{1}{2}\sqrt{-7+4\sqrt{7}} \right)^{{1/4}}\, \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(8i) &= \frac{1}{2^{73/32}} \frac{(-1+\sqrt[4]{2})^{1/2}}{(1+\sqrt{2})^{1/8}} \frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\\

\eta(16i) &= \frac{1}{2^{177/64}} \frac{(-1+\sqrt[4]{2})^{1/4}}{(1+\sqrt{2})^{1/16}} \left(-2^{5/8}+\sqrt{1+\sqrt{2}}\right)^{1/2}\,\frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}\end{aligned}$$

with the higher ones $>4$ added by this OP. (Note the powers of $2$.)

- Has the $\Gamma$-like function $f_p(n) = 1^{\ln(1)^p} \cdot 2^{\ln(2)^p} \cdot \ldots \cdot n^{\ln(n)^p} $ been discussed anywhere?
- How do compare two ratios of gamma functions?
- What is the role of mathematical intuition and common sense in questions of irrationality or transcendence of values of special functions?
- Improper integral of $\log x \operatorname{sech} x$
- Inequality for incomplete Gamma Function
- How to come up with the gamma function?

Questions:

- Similar to the others, what is the exact value of $\eta(6i)$?
- Is it true that the function,

$$F(\sqrt{-N}) = \frac{\pi^{3/4}}{\Gamma\big(\tfrac{1}{4}\big)}\,\eta(\sqrt{-N}) $$

is analgebraic numberonly if $N$ is a square?

**P.S.** It seems strange there is a function that yields an *algebraic number* for square input $N$ and a *transcendental number* for non-square $N$. (Are there well-known functions like that?) For an example of non-square $N$, we have,

$$\eta(\sqrt{-3}) = \frac{3^{1/8}}{2^{4/3}} \frac{\Gamma\big(\tfrac{1}{3}\big)^{3/2}}{\pi} = 0.63542\dots$$

and $F(\sqrt{-3})$ seems to be transcendental.

- Some questions about the gamma function
- Trying to generalize an inequality from Jitsuro Nagura: Does this work?
- Behavior of Gamma Distribution over time
- Integral $\int_0^1 \log \Gamma(x)\cos (2\pi n x)\, dx=\frac{1}{4n}$
- Closed form for $\sum_{n=1}^\infty\frac{(-1)^n n^4 H_n}{2^n}$
- Asymptotes of $\Gamma(\frac{1}{2} +ix)$ when $\vert x \vert \to \infty$
- a new continued fraction for $\sqrt{2}$
- Why is Euler's Gamma function the “best” extension of the factorial function to the reals?
- A closed form of $\sum_{k=0}^\infty\frac{(-1)^{k+1}}{k!}\Gamma^2\left(\frac{k}{2}\right)$
- How to prove $\int_0^\infty J_\nu(x)^3dx\stackrel?=\frac{\Gamma(1/6)\ \Gamma(1/6+\nu/2)}{2^{5/3}\ 3^{1/2}\ \pi^{3/2}\ \Gamma(5/6+\nu/2)}$?

Since we know the value of $\eta(3i)$, the point is just to compute the value of the product:

$$ \prod_{n\geq 0}(1+e^{-6\pi n})=\exp\sum_{n\geq 0}\log\left(1+e^{-6\pi n}\right)=\exp\sum_{n\geq 0}\int_{n}^{n+1}\frac{6\pi n}{1+e^{6\pi s}}\,ds$$

where:

$$\sum_{n\geq 0}\int_{n}^{n+1}\frac{6\pi n}{1+e^{6\pi s}}\,ds = \int_{0}^{+\infty}\frac{6\pi s\,}{1+e^{6\pi s}}-\int_{0}^{+\infty}\frac{6\pi\{s\}}{1+e^{6\pi s}}$$

and the first integral in the RHS equals $\frac{\pi}{72}$ by the residue theorem, while expanding the fractional part as its Fourier series, $\{s\}=\frac{1}{2}-\sum_{n\geq 1}\frac{\sin(2\pi n s)}{\pi n}$, we get:

$$\begin{eqnarray*}\int_{0}^{+\infty}\frac{6\pi\{s\}\,ds}{1+e^{6\pi s}}&=&\frac{\log 2}{2}-\sum_{n\geq 1}\int_{0}^{+\infty}\frac{6 \sin(2\pi n s)}{n(e^{6\pi s}+1)}\,ds\\&=&\frac{\log 2}{2}-\sum_{n\geq 1}\frac{6}{n}\sum_{m\geq 0}(-1)^m\int_{0}^{+\infty}\sin(2\pi n s)\,e^{-6\pi m s}\,ds\\&=&\frac{\log 2}{2}-\frac{3}{\pi}\sum_{n\geq 1}\sum_{m\geq 0}\frac{(-1)^m}{9 m^2+n^2}\\&=&\frac{\log 2}{2}-\frac{\pi}{2}-\frac{3}{\pi}\sum_{m,n\geq 1}\frac{(-1)^m}{9m^2+n^2}\end{eqnarray*}$$

and the last series just depends on the number of ways to represent a positive integer $\not\equiv 2\pmod{3}$ through the binary quadratic form $n^2+9m^2$: it is, with minor manipulations, just a Dirichlet convolution. I have just applied the same techniques of this answer, just in reverse.

This shows a clear connection between the evaluation of the Dedekind eta function at quadratic irrationals and the class number problem: $\eta(\sqrt{-N})$ depends on $\sum_{n\geq 1}(-1)^n\frac{r(n)}{n}$, where $r(n)$ counts the number of ways to represent $n$ as $a^2+Nb^2$. If $N$ is a square or $a^2+Nb^2$ is the only reduced quadratic form of discriminant $-4N$ (class number one) we may explicitly compute such series, and it turns out that $F(\sqrt{-N})$ is an algebraic number. Otherwise, $\sum_{n\geq 1}(-1)^n\frac{r(n)}{n}$ is not even a convolution of Dirichlet series, hence your conjecture is very likely to hold.

Ultimately, the computation of $\eta(6i)$ can be carried on by recalling that:

$$j(\tau)=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^8+2^8\left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{16}\right)^{3} $$

and by computing the Klein $j$-invariant $j(3i)$. The Wikipedia page gives:

$$ j(3i) = \frac{1}{27}(2+\sqrt{3})^2(21+20\sqrt{3})^3.$$

After persevering with a *Mathematica* session, I found that $F(6i)$ is the root of $96$-deg eqn (no wonder it was hard to find!) but could be prettified as,

$$\eta(6i) = \frac{1}{2\cdot 6^{3/8}} \left(\frac{5-\sqrt{3}}{2}-\frac{3^{3/4}}{\sqrt{2}}\right)^{1/6}\,\frac{\Gamma\big(\tfrac{1}{4}\big)}{\pi^{3/4}}$$

However, the second question is still open.

The answer to the second question is very simple.

Assume the complete elliptic integral of the first kind

$$

K(x)=\int^{\pi/2}_{0}\frac{d\theta}{\sqrt{1-x^2\sin^2(\theta)}}=\frac{\pi}{2}\cdot {}_2F_1\left(\frac{1}{2},\frac{1}{2};1;x^2\right).

$$

Then if we define the elliptic singular modulus $0<k_r<1$ to be the solution of

$$

\frac{K\left(\sqrt{1-k_r^2}\right)}{K(k_r)}=\sqrt{r}\textrm{, }r>0,

$$

we know that $k_r$ is algebraic for $r$ positive rational. Assume the notation:

$$

K[r]:=K(k_r)\textrm{, }r>0

$$

Also for $r_1,r,N$, such that $N$ positive integer, $r\in Q^{*}_{+}$, with $r_1=N^2r$, we have

$$

\frac{K[N^2r]}{K[r]}=M_N(r)

$$

The function $M_N(r)$ is called: “the multiplier” and for $r,N$ as above it is an algebraic number.

The Dedekind eta function is just

$$

\eta(z)=\eta_1(q):=q^{1/24}\prod^{\infty}_{n=1}\left(1-q^n\right)\textrm{, }q=e^{2\pi i z}\textrm{, }Im(z)>0.\tag 1

$$

We want to find $\eta(i\sqrt{r})$, $r>0$. For this we define the Ramanujan eta function

$$

f(-q):=\prod^{\infty}_{n=1}\left(1-q^n\right)\textrm{, }q=e^{-\pi\sqrt{r}}\textrm{, }r>0.\tag 2

$$

The function $f(-q)$ can evaluated at $q=e^{-\pi\sqrt{r}}$, $r>0$ as (see [W,W] Chapter 21 pg.488):

$$

f(-q)=\frac{2^{1/3}}{\sqrt{\pi}}q^{-1/24}(k_r)^{1/12}(k’_r)^{1/3}K[r]^{1/2}\tag 3

$$

Assume that $q_1=e^{-\pi\sqrt{r_1}}$, with $r_1=N^2r$ and $GCD(N,r)=1$, ($r_1,N,r$ are integers, $N>1$ and $r$ is square free), then from (1),(2),(3) we have:

$$

\eta(i\sqrt{r_1})=\eta(i\sqrt{N^2r})=q_1^{1/12}f(-q_1^2)=algebraic\cdot \frac{\sqrt{K[4r_1]}}{\sqrt{\pi}}=alg\cdot\frac{\sqrt{K[4N^2r]}}{\sqrt{\pi}}=

$$

$$

=alg\cdot \sqrt{M_2(r)}\sqrt{M_{N}(r)}\frac{\sqrt{K[r]}}{\sqrt{\pi}}

$$

Hence if $r_1$ is a square (which means $r=1)$, then

$$

\eta(i\sqrt{r_1})=alg\cdot\sqrt{\frac{K[1]}{\pi}}=alg\cdot \frac{\Gamma\left(\frac{1}{4}\right)}{\pi^{3/4}}

$$

Q.E.D.

Note:

$k’_r=\sqrt{1-k_r^2}$. $k’_r$ is called the coplementary modulus.

References

[W,W]: E.T. Whittaker and G.N. Watson. ‘A course on Modern Analysis’. Cambridge U.P. 1927.

- pdf of a quotient of uniform random variables
- If a and b are relatively prime and ab is a square, then a and b are squares.
- Multivariable integral over a simplex
- Asymptotics for Mertens function
- What does the function f: x ↦ y mean?
- How to use Warshall's Algorithm
- Existence in ZF of a set with countable power set
- Calculating alternating Euler sums of odd powers
- How to integrate this type of fractions
- Finite, normal extension of odd degree.
- Does a non-trivial solution exist for $f'(x)=f(f(x))$?
- Compact operators on an infinite dimensional Banach space cannot be surjective
- Prove that $\operatorname{Trace}(A^2) \le 0$
- Haar measure on SO(n)
- Vector space bases without axiom of choice