Intereting Posts

homomorphisms of $C^{\infty}(\mathbb R^{n})$
An introduction to Khovanov homology, Heegaard-Floer homology
Newton's method in higher dimensions explained
advanced calculus, differentiable and limit problem
Cayley graph on $ D_{2n} $ and $ \mathbb Z_n$
Are the matrix products $AB$ and $BA$ similar?
How find the value $\beta$ such $\left|\frac{p}{q}-\sqrt{2}\right|<\frac{\beta}{q^2}$
Left Adjoint of a Representable Functor
Does the equation $x^4+y^4+1 = z^2$ have a non-trivial solution?
Notation on the tangent space.
Why is the Convex Hull property (e..g of Bézier curves) so important?
Subderivative of $ ||Au||_{L^{\infty}} $ to compute proximal operator
Bernstein polynomial looks like this: $B_i^n={{n}\choose{i}}x^i(1-x)^{n-i}$.Find it's $r$'th derivative.
Vector space of infinite sequences in $\Bbb R$
What would qualify as a valid reason to believe there is a closed form?

If two dice are rolled repeatedly, and $X$ is the number of tosses until $3$ is rolled, and $Y$ is the number of tosses until a $5$ is rolled, what is the probability$(X < Y)$? Also, if $Z$ is the number of rolls until a $10$ is rolled, what the probability$(X < Y < Z)$?

Is $P(X < Y) = \sum_{n=2}^{\infty}\sum_{k=1}^{\infty}((32/36)^{(n-1)}(4/36)-(34/36)^{(k-1)}(2/36)]$?

- Exercise regarding Poisson processes and the uniform distribution
- What is the square of summation?
- Bounding the Density of the Maximum of N Random Variables
- Probability of random integer's digits summing to 12
- Variance of random variable
- gradient descent optimal step size

- Upper/lower bound on covariance two dependent random random variables.
- Proof that $A\subseteq B\implies\Bbb P(A) \le\Bbb P(B)$
- Probability of a repeatedly right answer
- Proving the sum of two independent Cauchy Random Variables is Cauchy
- Triangle forming probability for area
- Probability of rolling a die
- Intuition behind the Definition of Conditional Probability (for 2 Events)
- Probability that $7^m+7^n$ is divisible by $5$
- The sum of $n$ independent normal random variables.
- How can a Markov chain be written as a measure-preserving dynamic system

(a) $P(X<Y)$

Suppose $q = P(3 \text{ before } 5)$. When will we see a $3$ before we see a $5$? That is if we first see a $3$ on the first roll (we are done), or if we don’t see a $3$ or a $5$ on the first roll and then see a $3$ before a $5$ after that. In other words:

$$q = P(3) \cdot 1 + P(5) \cdot 0 + P(\text{neither } 3 \text{ nor } 5) \cdot q$$

Since we know that $P(3) = \frac{2}{36}$, $P(5) = \frac{4}{36}$ we get $P(\text{neither } 3 \text{ nor } 5) = 1 – \frac{2}{36} – \frac{4}{36} = \frac{30}{36}$, so

$$q = \frac{2}{36} + \frac{30}{36} q \quad \Longleftrightarrow \quad q = \frac{1}{3}$$

Note that we can also rewrite the first equation as

$$q = P(3) \cdot 1 + P(5) \cdot 0 + P(\text{neither } 3 \text{ nor } 5) \cdot q \quad \Longleftrightarrow \quad q = \frac{P(3)}{P(3) + P(5)} = \frac{P(3)}{P(3 \text{ or } 5)} = P(3\ |\ 3 \text{ or } 5)$$

This is in accordance with a comment made by Dilip: We can simply ignore all throws which are neither a $3$ or a $5$, as they are irrelevant. Then the probability of seeing a $3$ first is simply the conditional probability of throwing a $3$, given that it’s either a $3$ or a $5$.

(b) $P(X<Y<Z)$

We can use the same approach as above. First, let us ignore all throws which are not $3$, $5$ or $10$. We now need that the first event is a $3$, which happens with probability

$$P(X<Y,X<Z) = \frac{P(X)}{P(X \text{ or } Y \text{ or } Z)} = \frac{P(X)}{P(X) + P(Y) + P(Z)} = \frac{2}{2+4+3} = \frac{2}{9}$$

Now if this happens, we only need that in all successive events of $3,5,10$ we first see some number of $3$s, and then see a $5$ (and not a $10$ yet). But that means that after this first event, we can again ignore all events $X$, and look at the first throw resulting in either a $5$ or a $10$. Then

$$P(Y<Z | X<Y,X<Z) = \frac{P(Y)}{P(Y \text{ or } Z)} = \frac{P(Y)}{P(Y)+P(Z)} = \frac{4}{4+3} = \frac{4}{7}$$

So the combined probability is then

$$P(X<Y<Z) = P(X<Y,X<Z) \cdot P(Y<Z | X<Y, X<Z) = \frac{2}{9} \cdot \frac{4}{7} = \frac{8}{63}$$

Following on from @Thijs analysis, which is actually a tool called “first step analysis”, we can get the probability that $P(X<Y<Z)$. So we have to wait until one of these events happens. $P(X)=\frac{2}{36}$ $P(Y)=\frac{4}{36}$ $P(Z)=\frac{3}{36}$. So we have probability of $\frac{27}{36}$ of achieving “nothing” each trial, and effectively going back to the first step.

So at effective trial one, if $X$ occurs we have success, if $Y$ or $Z$ occurs, we have failure.

$$P(X<Y<Z)=\frac{2}{36}P(X<Y<Z|X<Y,Z)+\frac{3}{36}P(X<Y<Z|Z<X,Y)$$

$$+\frac{4}{36}P(X<Y<Z|Y<X,Z)+\frac{27}{36}P(X<Y<Z)$$

The middle two probabilities are zero, and the first is simply $P(Y<Z)$, and applying first step analysis again we have

$$P(Y<Z)=\frac{4}{7}$$

Plugging back into the previous equation and solving we get

$$P(X<Y<Z)=\frac{8}{36(7)}+\frac{27}{36}P(X<Y<Z)=\frac{8}{63}$$

Here’s a simpler way than one involving infinite series (such as that posted by Sasha). Roll a die until you get either a 3 or a 5. What’s the probability that it’s a 3? It’s just the conditional probability of getting a 3, given that you’ve got either a 3 or a 5:

$$

\Pr(W=3\mid W=3\text{ or }W=5) = \frac{\Pr(W=3)}{\Pr(W=3\text{ or }W=5)} = \frac{2/36}{6/36}= \frac13.

$$

- When are two simple tensors $m' \otimes n'$ and $m \otimes n$ equal? (tensor product over modules)
- Given $N$, what is the next prime $p$ greater than $N$?
- How can I show that $\prod_{{n\geq1,\, n\neq k}} \left(1-\frac{k^{2}}{n^{2}}\right) = \frac{\left(-1\right)^{k-1}}{2}$?
- Does $\frac{1}{n}\sum_{i=1}^n|x_i|\to L<\infty$ imply $\frac{1}{n}\max_{1\leq i\leq n}|x_i|=0$?
- Is $\sum_{n=1}^\infty \frac{\sin(2n)}{1+\cos^4(n)}$ convergent?
- What is the injective envelope of $\mathbb{Z}/n\mathbb{Z}$?
- weak convergence implies boundedness.
- Relationship between inner product and norm
- Prove that every nonzero prime ideal is maximal in $\mathbb{Z}$
- Understanding concatenating the empty set to any set.
- Integrating trigonometric function problem $\int \frac{3\sin x+2\cos x}{2\sin x+3\cos x}dx$
- Prerequisites on Probability Theory
- Trying to understand the use of the “word” pullback/pushforward.
- The shape of Pringles potato chip
- What are the left and right ideals of matrix ring? How about the two sided ideals?