Why does $\left(\int_{-\infty}^{\infty}e^{-t^2} dt \right)^2= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy$?

Why does $$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right)^2 = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy ?$$

This came up while studying Fourier analysis. What’s the underlying theorem?

Solutions Collecting From Web of "Why does $\left(\int_{-\infty}^{\infty}e^{-t^2} dt \right)^2= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2 + y^2)}dx\,dy$?"

Hint. One may observe that
$$
A\int_{-\infty}^{+\infty}e^{-x^2}dx=\int_{-\infty}^{+\infty}A\:e^{-x^2}dx
$$ for any constant $A$. Then putting $A:=\int_{-\infty}^{+\infty}e^{-y^2}dy$ and using Fubini’s theorem, which is allowed here, yields the desired result.

$$\left(\int_a^b f(x)\mathrm dx\right)^2=\left(\int_a^b f(x)\mathrm dx\right)\left(\int_a^b f(x)\mathrm dx\right)\underset{x\ is\ a \ mute\ variable}{=}\left(\int_a^b f(x)\mathrm dx\right)\left(\int_a^b f(y)\mathrm dy\right)$$$$\underset{Fubini}{=}\int_a^b\int_a^bf(x)f(y)\mathrm dx\mathrm dy$$

$$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right)^2 = \left(\int_{-\infty}^{\infty}e^{-t^2}dt\right) * \left(\int_{-\infty}^{\infty}e^{-u^2}du\right) $$since $u$ and $t$ varies independently we have$$\left(\int_{-\infty}^{\infty}e^{-t^2}dt\right) * \left(\int_{-\infty}^{\infty}e^{-u^2}du\right)= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(u^2 + t^2)}du\,dt$$