with inequality $\frac{1}{3a+5b+7c}+\frac{1}{3b+5c+7a}+\frac{1}{3c+5a+7b}\le\frac{\sqrt{3}}{4}$

let $a,b,c>0$, such $ab+bc+ac=1$,show that
$$\dfrac{1}{3a+5b+7c}+\dfrac{1}{3b+5c+7a}+\dfrac{1}{3c+5a+7b}\le\dfrac{\sqrt{3}}{4}$$

by Macavity C-S:with inequality $\frac{y}{xy+2y+1}+\frac{z}{yz+2z+1}+\frac{x}{zx+2x+1}\le\frac{3}{4}$
$$\dfrac{1}{3a+5b+7a}\le\dfrac{1}{2}\left(\dfrac{1}{6a+9b}+\dfrac{1}{b+7c}\right)$$
It suffices to show
$$\sum_{cyc}\left(\dfrac{1}{6a+9b}+\dfrac{1}{b+7c}\right)\le\dfrac{\sqrt{3}}{2}$$

Solutions Collecting From Web of "with inequality $\frac{1}{3a+5b+7c}+\frac{1}{3b+5c+7a}+\frac{1}{3c+5a+7b}\le\frac{\sqrt{3}}{4}$"

Using Cauchy-Schwarz in a different way:
$$\begin{align}
2(3a+5b+7c) &= 15(a+b+c)-(9a+5b+c) \\
&= \sqrt{(118+107)(2+a^2+b^2+c^2)} – (9a+5b+c)\\
&\ge \sqrt{118\cdot2}+\sqrt{(9^2+5^2+1^2)(a^2+b^2+c^2)} -(9a+5b+c)\\
&\ge 2\sqrt{59}
\end{align}
$$

$$\implies \sum_{cyc} \frac1{3a+5b+7c} \le \frac3{\sqrt{59}} < \frac{\sqrt3}4$$


P.S. The maximum is in fact $\dfrac{\sqrt3}5$, though a simple way to show that eludes me for now.